Group Oriented Attribute-based Encryption Scheme from Lattices with Shamir's Secret Sharing scheme

Maharage Nisansala Sevwandi Perera¹, Toru Nakamura², Takashi Matsunaka¹, Hiroyuki Yokoyama¹, and Kouichi Sakurai³

- 1: Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- 2: KDDI Research, Inc., Saitama, Japan
- 3: Kyushu University, Fukuoka, Japan

NSS 2023 – Canterbury, UK 15th Aug., 2023

Abstract

We construct <u>Group Oriented (GO) Attribute-based Encryption (ABE)</u> scheme (<u>GO-ABE scheme</u>) using the post-quantum cryptographic primitive <u>lattices</u> and employ <u>Shamir's secret sharing scheme</u> to satisfy <u>GO-ABE requirements</u>.

Abstract

We construct <u>Group Oriented (GO) Attribute-based Encryption (ABE)</u> scheme (<u>GO-ABE scheme</u>) using the post-quantum cryptographic primitive <u>lattices</u> and employ <u>Shamir's secret sharing scheme</u> to satisfy <u>GO-ABE requirements</u>.

Content

Group Oriented Attribute-based Encryption

Attribute-based Encryption (ABE): KP-ABE and CP-ABE

GO-ABE Scheme

Requirement of GO-ABE

Post-quantum construction of GO-ABE (our Goal)

Post-quantum primitive – Lattices

Need of Shamir's Secret Sharing Scheme

Post- quantum (step by step) construction

Summary with Limitations

GROUP ORIENTED ATTRIBUTE BASED ENCRYPTION SCHEME

Attribute-based Encryption (ABE)

Attribute-based Encryption (ABE) Public-key Encryption (PKE) **Public** Public Encryption key key Encrypt Encrypt **Attributes** & **Access Policy** Secret Secret Decryption key key Decrypt Decrypt text text

GO-ABE [Li et al. 2015]

- Group Oriented Attribute-based Encryption (GO-ABE) was introduced by Li et al. in NSS2015
- Group Oriented Attribute-based Encryption (GO-ABE) allows
 - Users from the Same Group to cooperate to decrypt a ciphertext
 - Without revealing their secret keys

"Users from the same group are able to cooperate with each other to decrypt a ciphertext encrypted under a set of attributes α such that a single user may not have enough attributes to match the attribute set α "

[Li et al. 2015].

Requirement of GO-ABE – Confidential Data Access

In a company structure, it is obvious requiring high level managers involvement from different departments to access company confidential data probably saved in the cloud.

Requirement of GO-ABE – Confidential Data Access

But CP-ABE allows a single party who possesses all the required attributes to access data. It is not practical because no manager may hold all the positions from different departments.

Requirement of GO-ABE – Confidential Data Access

Allow managers from all required departments to collaborate for accessing data — which is the real requirement of company structure

Requirement of GO-ABE – Access Patient Data [Li et al. 2015]

Doctor 1 (**Cardiologist**) and Doctor 2 (**Gastroenterologist**) collaborate

GO-ABE [Li et al. 2015]

Algorithm	Input	Output
Setup	Security parameter λ	Public parameter PK Master secret key MK
Encryption	Public parameter PK Message M Access Policy W	Ciphertext C
KeyGen	Public parameter PK Master secret key MK Group id g Attribute set <i>S</i>	Decryption Key \mathbf{SK}_{S}^{g}
Decryption	Ciphertext C Public parameter PK Group id g	Message M

Cooperating user attribute sets: $U = S_1 \cup S_2 \cup \cdots \cup S_N$ Decrypt if $|\mathcal{W} \cap U| \ge t$, t is the threshold value

Satisfies the selective set model security

Selective Set-model Security

The adversary's goal is to determine which of the two messages is encrypted using the predefined attribute set \mathcal{W}^* .

 $\mathcal A$ is an adversary against selective-set model anonymity. $\mathcal C$ is a Challenger.

- (1) \mathcal{A} sends the challenging access structure \mathcal{W}^* .
- (2) C creates PK and MK
- (3) Gives PK to \mathcal{A} .
- (4) \mathcal{A} queries private keys for attribute set $S \neq \mathcal{W}^*$ and
- (5) C replies with SK_S^g quering his own oracle.
- (6) \mathcal{A} sends the message $b^* \in \{0,1\}$.
- (7) \mathcal{C} selects a random $r \in \{0,1\}$.
- (8) If r = 0; c_1^* , c_2^* are honest values. Else selects randomly.
- (9) \mathcal{C} outputs $\mathcal{C}^* = (\mathcal{W}^*, c_1^*, c_2^*)$
- (10) \mathcal{A} sends r'.

If r' = r then \mathcal{A} wins.

GO-ABE [Li et al. 2015]

- Group Oriented Attribute-based Encryption (GO-ABE) allows
 - Users from the Same Group
 to cooperate to decrypt a ciphertext
 - Without revealing their secret keys

Users from the same group are able to cooperate with each other to decrypt a ciphertext encrypted under a set of attributes α such that a single user may not have enough attributes to match the attribute set α [Li et al. 2015].

Li et al.'s proposal is constructed using bilinear mappings.
Not quantum safe

Our Goal

- Provide a quantum safe construction for the GO-ABE scheme
 - What are the supporting primitives / building blocks in our proposal
 - Lattice-based cryptography
 - Shamir's secret sharing scheme

GO-ABE SCHEME FROM LATTICES

Lattice-based Cryptography

- Is quantum safe because computational problems like Approximate Shortest Independent Vector Problem $(SIVP_{\lambda})$ not broken (yet).
- We use Learning with error (LWE) and Small Integer Solution (SIS).
- LWE asked to distinguish LWE samples from truly random samples
- SIS asked to find small non-zero vector x, such that $A.x = 0 \mod q$ and $||x||_{\infty} \le \beta$

LWE: Learning With Errors

$$\left(\begin{array}{c} A \end{array}\right) \left[\begin{array}{c} x \end{array}\right] + \left[\begin{array}{c} e \end{array}\right] = \left[\begin{array}{c} z \end{array}\right]$$

SIS: Short Integer Solution

For given (A,z), find (x, e)

For given (A), find non-zero vector(x)

Shamir's Secret Sharing (SSS) scheme

■A secret s is split in to ℓ shares; at least k shares should be combined to reconstruct the secret s

Why we use Shamir's Secret Sharing (SSS) scheme

GO-ABE Requirement:

Users should be from the same group
Users should keep their attribute secret keys secure

Why we use Shamir's Secret Sharing (SSS) scheme

GO-ABE Requirement:

Users should be from the same group
Users should keep their attribute secret keys secure

SSS allows I shares of ℓ shares to construct the origin.

In our construction,

Public key $\mathbf{u} = (u_1, u_2, \dots, u_n)$

Share u among ℓ shares, such that j-th share vector $\hat{u}_j = (\hat{u}_{j,1}, ..., \hat{u}_{j,n})$

The fractional Lagrangian coefficient L_i is calculated such that, u =

$$\sum_{j\in J} L_j$$
, where $J\subset [\ell]$

- ❖Our proposal does not use SSS to reconstruct a secret; use for proving the users are from the same group.
- Shares are used to generate secret keys of individual users.

Decide group details and attribute set. The ℓ for SSS

Trusted Setup Party

Decide Access Policy including the threshold value *k*

Encrypting Party

Let

each group has an id g and has unique group public key ($\mathbf{GPK} = (\mathbf{G}, \mathbf{G}_0, \mathbf{G}_1, \mathbf{g})$). and a secret key (GSK = T) selected from (G, T_G) \leftarrow TrapGen(n, m, q) and \mathbf{G}_0 , $\mathbf{G}_1 \in \mathbb{Z}_q^{m \times n}$ and $\mathbf{g} \in \mathbb{Z}_q^n$ randomly.

1. For all attribute $i \in \mathbb{A}$:

$$\mathbf{A}_{i=1}^{\ell}$$
, $\mathbf{T}_{i=1}^{\ell} \leftarrow \operatorname{TrapGen}(n, m, q)$

2. Select vector $\mathbf{u} \in \mathbb{Z}_q^n$

System

$$\mathsf{PK} = (\{A\}_{i \in [\ell]}, \mathbf{u})$$

 $_{\mathbf{A}} \mathsf{PK} = (\{\mathbf{A}\}_{i \in [\ell]}, \mathbf{u})$

Encrypt(**PK**, M, W) \rightarrow ($C = c_1, c_2$)

- 1. Let $D \stackrel{\text{def}}{=} (\ell!)^2$
- 2. Select $\mathbf{s} \in \mathbb{Z}_q^n$, for $i \in [w]$: $\mathbf{e}_i \in \mathbb{Z}_q^m$, and $e \in \mathbb{Z}_q$
- 3. $c_1 = \mathbf{A}_i^T \mathbf{s} + D\mathbf{e}_i$ for $i \in [w]$, $c_2 = \mathbf{u}^T s + De + M[q/2]$

1. For all attribute $i \in A$: $\mathbf{A}_{i=1}^{\ell}, \mathbf{T}_{i=1}^{\ell} \leftarrow \operatorname{TrapGen}(n, m, q)$

2. Select vector $u \in \mathbb{Z}_q^n$

$$\mathsf{PK} = \big(\{ \mathsf{A} \}_{i \in [\ell]}, \mathsf{u} \big)$$

Encrypt(**PK**, M, W) \rightarrow ($C = c_1, c_2$)

- 1. Let $D \stackrel{\text{def}}{=} (\ell!)^2$
- 2. Select $\mathbf{s} \in \mathbb{Z}_q^n$, for $i \in [w]$: $\mathbf{e}_i \in \mathbb{Z}_q^m$, and $e \in \mathbb{Z}_q$
- 3. $c_1 = \mathbf{A}_i^T \mathbf{s} + D\mathbf{e}_i \text{ for } i \in [w],$ $c_2 = \mathbf{u}^T s + De + M[q/2]$

 $\mathsf{PK} = \big(\{ \mathsf{A} \}_{i \in [\ell]}, \mathsf{u} \big)$

 $\mathsf{Setup}(\lambda) \rightarrow \left(\mathsf{PK} = \left(\{A\}_{i \in [\ell]}, \mathbf{u} \right), \mathsf{MK} = \{T\}_{i \in [\ell]} \right)$

- 1. For all attribute $i \in \mathbb{A}$: $\mathbf{A}_{i=1}^{\ell}, \mathbf{T}_{i=1}^{\ell} \leftarrow \operatorname{TrapGen}(n, m, q)$
- 2. Select vector $u \in \mathbb{Z}_q^n$

KeyGen(**PK**, **MK**, **g**, S) \rightarrow (**SK**_S^g = ((x_1^d , ..., x_S^d), d)

 $SK_{S=Cardi}^{g}$

1. For a group: $G, T_G \leftarrow \operatorname{TrapGen}(n, m, q)$

 $\mathbf{G_0}$, $\mathbf{G_1} \in \mathbb{Z}_q^{m imes n}$, $\mathbf{g} \in \mathbb{Z}_q^n$

Set **GPK** = (G, G_0, G_1, g) , **GSK** = T_G

- 2. User id $d \in \mathbb{N}$
- 3. Use SSS on \mathbf{u} , such that $\mathbf{u} = \sum_{j \in J} L_j \cdot \widehat{\mathbf{u}}_j$
- 4. For $i \in S$:

 $\mathbf{v}_i \leftarrow \text{SamplePre}(\mathbf{A}_i, \mathbf{T}_i, \widehat{\mathbf{u}}_i - \mathbf{g}, \sigma); \mathbf{A}_i \cdot \mathbf{v}_i = \widehat{\mathbf{u}}_i - \mathbf{g}$

- 5. Compute $G_d = [G|G_0 + dG_1]$ and $T_d \leftarrow ExtBasis(T_G, G_d)$
- 6. For $i \in S$: $\mathbf{x}_i^d \leftarrow \text{SamplePre}(\mathbf{G}_d, \mathbf{T}_d, \mathbf{v}_i, \sigma)$; $\mathbf{G} \cdot \mathbf{x}_i^d = \mathbf{v}_i$

- 2. Select $\mathbf{s} \in \mathbb{Z}_q^n$, for $i \in [w]$: $\mathbf{e}_i \in \mathbb{Z}_q^m$, and $e \in \mathbb{Z}_q$
- 3. $c_1 = \mathbf{A}_i^T \mathbf{s} + D\mathbf{e}_i$ for $i \in [w]$, $c_2 = \mathbf{u}^T s + De + M|q/2|$

 $\mathsf{PK} = (\{A\}_{i \in [\ell]}, \mathbf{u})$

Trusted Setup Party

 $\mathsf{Setup}(\lambda) \rightarrow \left(\mathsf{PK} = \left(\{A\}_{i \in [\ell]}, \mathbf{u}\right), \mathsf{MK} = \{T\}_{i \in [\ell]}\right)$

- 1. For all attribute $i \in \mathbb{A}$: $\mathbf{A}_{i=1}^{\ell}, \mathbf{T}_{i=1}^{\ell} \leftarrow \operatorname{TrapGen}(n, m, q)$
- 2. Select vector $u \in \mathbb{Z}_q^n$

Key Generator

Decrypt(**PK**, C, \mathbf{g}) $\rightarrow M$

 \mathbf{y}_{C}

 \mathbf{y}_G

 $\mathsf{KeyGen}(\mathbf{PK}\,,\mathbf{MK},\mathbf{g},S) \!\!\to\! \big(\mathbf{SK}_S^{\mathbf{g}} = (\big(x_1^d,\dots,x_s^d\big),\boldsymbol{d})\,\big)$

 $\mathbf{SK}_{S=Cardi}^{\mathbf{g}}$ 1. For a group: $G, T_G \leftarrow \operatorname{TrapGen}(n, m, q)$

Compute $\mathbf{G}_d = [\mathbf{G}|\mathbf{G}_0 + d\mathbf{G}_1]$ $GSK = T_G$ publishes $\mathbf{y}_i = (\mathbf{G}_d \cdot \mathbf{x}_i)$ $\mathbf{u} = \sum_{i \in I} L_i \cdot \widehat{\mathbf{u}}_i$

Calculate L_i ; $\sum_{i \in [k]} L_i \mathbf{A}_i \mathbf{y}_i = \mathbf{u} \mod q$

Compute $r \leftarrow c_2 - \left((k \times \mathbf{g})^T + \sum_{i \in [k]} L_i \mathbf{y}_i^T \mathbf{c}_1 \right)$

If $|r| < \frac{q}{4}$, output 0, else 1 as the message M

4. For $i \in S$:

 $\mathbf{v}_i \leftarrow \text{SamplePre}(\mathbf{A}_i, \mathbf{T}_i, \widehat{\mathbf{u}}_i - \mathbf{g}, \sigma); \mathbf{A}_i \cdot \mathbf{v}_i = \widehat{\mathbf{u}}_i - \mathbf{g}$

- 5. Compute $\mathbf{G}_d = [\mathbf{G}|\mathbf{G}_0 + d\mathbf{G}_1]$ and $\mathbf{T}_d \leftarrow \mathbf{ExtBasis}(\mathbf{T}_G, \mathbf{G}_d)$
- 6. For $i \in S$: $\mathbf{x}_i^a \leftarrow \text{SamplePre}(\mathbf{G}_d, \mathbf{T}_d, \mathbf{v}_i, \sigma)$; $\mathbf{G} \cdot$ $\mathbf{x}_i^a = \mathbf{v}_i$ **26**

Encrypt(**PK**, M, W) \rightarrow ($C = c_1, c_2$)

- 1. Let $D \stackrel{\text{def}}{=} (\ell!)^2$
- 2. Select $\mathbf{s} \in \mathbb{Z}_q^n$, for $i \in [w]$: $\mathbf{e}_i \in \mathbb{Z}_q^m$, and $e \in \mathbb{Z}_q$
- 3. $c_1 = \mathbf{A}_i^T \mathbf{s} + D\mathbf{e}_i$ for $i \in [w]$, $c_2 = \mathbf{u}^T s + De + M[q/2]$

 $\mathsf{PK} = (\{\mathsf{A}\}_{i \in [\ell]}, \mathsf{u})$

1. For all attribute $i \in A$:

$$\mathbf{A}_{i=1}^{\ell}, \mathbf{T}_{i=1}^{\ell} \leftarrow \operatorname{TrapGen}(n, m, q)$$

2. Select vector $u \in \mathbb{Z}_q^n$

 $\mathsf{Decrypt}(\mathbf{PK}\;,\;\mathcal{C}\;,\;\mathbf{g})_{\to\;M}$

Calculate L_i ; $\sum_{i \in [k]} L_i \mathbf{A}_i \mathbf{y}_i = \mathbf{u} \mod \mathbf{q}$ Compute $r \leftarrow c_2 - \left((k \times \mathbf{g})^T + \sum_{i \in [k]} L_i \mathbf{y}_i^T \mathbf{c}_1 \right)$ If $|r| < \frac{q}{4}$, output 0, else 1 as the message M SK^g_{S=Cardi}

Trusted

Setup Party

Compute $\mathbf{G}_d = [\mathbf{G}|\mathbf{G}_0 + d\mathbf{G}_1]$ publishes $\mathbf{y}_i = (\mathbf{G}_d \cdot \mathbf{x}_i)$

KeyGen(**PK**, **MK**, **g**, S) \rightarrow (SK_S^g = ((x_1^d , ..., x_S^d), d)

1. For a group:

$$G, T_G \leftarrow TrapGen(n, m, q)$$

 $\mathbf{G_0}, \mathbf{G_1} \in \mathbb{Z}_q^{m imes n}, \mathbf{g} \in \mathbb{Z}_q^n$

Set **GPK** =
$$(G, G_0, G_1, g)$$
, **GSK** = T_G

- 2. User id $d \in \mathbb{N}$
- 3. Use SSS on \mathbf{u} , such that $\mathbf{u} = \sum_{j \in J} L_j \cdot \widehat{\mathbf{u}}_j$
- 4. For $i \in S$:

$$\mathbf{v}_i \leftarrow \text{SamplePre}(\mathbf{A}_i, \mathbf{T}_i, \widehat{\mathbf{u}}_i - \mathbf{g}, \sigma); \mathbf{A}_i \cdot \mathbf{v}_i = \widehat{\mathbf{u}}_i - \mathbf{g}$$

5. Compute $\mathbf{G}_d = [\mathbf{G}|\mathbf{G}_0 + d\mathbf{G}_1]$ and

$$\mathbf{T}_d \leftarrow \mathbf{ExtBasis}(\mathbf{T}_G, \mathbf{G}_d)$$

6. For $i \in S$: $x_i^d \leftarrow \text{SamplePre}(\mathbf{G}_d, \mathbf{T}_d, \mathbf{v}_i, \sigma)$; $\mathbf{G} \cdot x_i^d = \mathbf{v}_i$

Security Proof

- Based on the hardness of Decision-LWE problem we proved that Lattice-based construction of GO-ABE scheme provides ciphertext privacy in the Selective-Set model.
- ullet Selective-Set model: The adversary declares the attribute set ${\mathcal W}$ that he wishes to be challenged upon.

Theorem 1. If there is an adversary \mathcal{A} with advantage > 0 against the selective-set model for the GO-ABE scheme, then there exists a PPT algorithm \mathcal{B} that can solve the decision-LWE problem.

Selective Set-model Security

Proof. The simulator \mathcal{B} uses the adversary \mathcal{A} to distinguish LWE oracle \mathcal{O} . First \mathcal{B} queries the LWE oracle \mathcal{O} for $(\ell m+1)$ times and obtain LWE samples $(a_k,b_k)\in\mathbb{Z}_q^n\times\mathbb{Z}_q$, where $k\in\{0,1,2,\ldots,m\}$. Then \mathcal{B} proceeds as below.

Initialize: \mathcal{A} announces to \mathcal{W}^* to \mathcal{B} Setup: B selects LWE challenges $\{(a_0,b_0),(a_i^1,b_i^1),(a_i^2,b_i^2),...(a_i^m,b_i^m)\}_{i\in[\ell]}$ for public matrices $\widehat{\mathbf{A}_i}$ and a_0 as \mathbf{u} Phase 1: \mathcal{B} answers each private key query by selecting parameters from LWE Challenge: When \mathcal{A} sends $b^* \in \{0,1\}$, \mathcal{B} uses \mathcal{W}^* and sets $c_1 = (Db_i^1, Db_i^2, ..., Db_i^m)$ for $i \in [\ell]$ $c_2 = Da_0 + M_b[q/2]$ if he wishes to generate C^* . That is r=0. Otherwise he randomly selects values. Guess: \mathcal{A} outputs b' If

Summary

- We present the Lattice based construction of GO-ABE scheme
- We employed Shamir's Secret Sharing Scheme to satisfy GO-ABE requirements

Limitations:

1. Efficiency is less in decryption because need to collect users' shares; however, this is reasonable fulfilling practical applications like access company confidential data

- 2. Only AND-gets on multivalued attributes are considered; not complex access policies
- 3. There is no tracing mechanism to track cooperated users
- 4. The cooperating situation is not controlled
- 5. Issues may occur due to the use of SSS:

Ex: If any structural change happens like introducing new attributes, need recreate all the keys

Thank you for Listening

perera.nisansala@atr.jp

Attribute-based Encryption (ABE)

Public-key Encryption (PKE) 公開鍵暗号 **Public Encryption** key Encrypt Secret **Decryption** key Decrypt text

Key-Policy Attribute-based Encryption (KP-ABE)

Ciphertext-Policy Attribute-based Encryption (CP-ABE)

CP-ABE Application – Patient Health Record System??

Necessity of GO-ABE [Li et al. 2015]

Since any doctor cannot satisfy the Access Policy Patient's life is in danger

Necessity of GO-ABE [Li et al. 2015]

Doctor 1 (**Cardiologist**) and Doctor 2 (**Gastroenterologist**) collaborate

• Even though both numerator and denominator in Li can be bounded as a fraction of integers, when presenting Author Proof 6 M. N. S. Perera et al. as an element in Zq the value Li is arbitrarily large. The idea of clearing the denominators prevents the large-value problem of Li. Let D := (!)2 be a sufficiently large constant, such that DLi ∈ Z for all i. Multiplying noise vectors of the encryption function with D we get, Cid = IBE.Enc(id, b ∈ {0, 1})=(AT 1,id1 s+De1,..., AT ,id s+De, uT s+De +bq/2). Thus, it is sufficient to bind the below for the correctness of the IBE scheme by q/4. Dei − k i∈S DLixT i ei Since DLi is an integer bounded by D2, it is enough to select noise vectors bounded by q/4D with overwhelming probability.

Lattices

