
Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

KDRM: Kernel Data Relocation Mechanism to
Mitigate Privilege Escalation Attack (Short Paper)
NSS 2023，Session 7: System and Hardware Security, 2023.8.17

Hiroki KUZUNOa, Toshihiro YAMAUCHIb,
aGraduate School of Engineering,

Kobe University, Japan
bFaculty of Environmental, Life, Natural Science and Technology,

Okayama University, Japan

2023/8/16 1

Outline

Summary and Result
Motivation and Goal

To make the countermeasure mechanism against kernel vulnerability

The detail of kernel vulnerability attack and Related Work
Memory randomization researches for kernel address space

Problem, Threat Model, and Contribution
Approach: KDRM (Kernel Data Relocation Mechanism)

The design of dynamically replacing credential information against privilege escalation

KDRM Implementation
The software relocation of credential information for the latest Linux kernel

Evaluation
Mitigation result of privilege escalation at the kernel layer
Overhead and attack complexity

Discussion and Conclusion

2023/8/16 2Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Summary and Result

Background and Motivation
OS kernel (kernel) vulnerability has become a huge threat to the system security
Adversary exploits the kernel vulnerability to compromise the credential management

It is an important topic to enhance the kernel resilience against the kernel attack

Approach
The purpose of KDRM: Kernel Data Relocation Mechanism

It can mitigate a kernel attack threat (e.g., memory corruption)
The mechanism relocates the credential information for the running kernel

The research tries to make the PoC of kernel data position of kernel memory
It tries to achieve the countermeasure of memory corruption attack at the kernel layer

Results
The kernel vulnerability attack failed on the Linux with KDRM
Overhead1: LMbench shows that 102.88%-149.67%
Overhead2: UnixBench shows that 2.50%

2023/8/16 3Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Motivation and Goal

Motivation
An adversary occurs in kernel data modification through malicious code with kernel mode

Enhancing kernel resilience at the kernel layer w/o any hardware and VMM features

Mitigate a kernel vulnerability attack with a memory corruption

The attack stages

Goal
To prevent illegal kernel data modification (i.e., credential information)

Enhance the kernel security capability relies on a secure kernel mechanism

2023/8/16 4Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Kernel
vulnerability attack
Remote or Local

Rootkit
Installation

Privilege escalation
Modified Security
feature on Kernel

Attack Stage 3
Mitigation

Attack Stage 04
Detection

Attack Stage 2
Prevention

Vulnerable kernel
code report

Attack Stage 1
Identification

Security feature is targeted from kernel attack

Kernel

The detail of kernel vulnerability attack

2023/8/16 5

Vulnerable
kernel code

Kernel
vulnerability attack

Privilege escalation
Modified Security
feature on Kernel

Rootkit
Installation

Attack Stage 2

Attack Stage 3

Attack Stage 4

2
Security
Feature /

Credential
4

Vulnerable kernel
code report

1

Malicious
code

3

Attack Stage 1

User process A

CPU / Memory management unit (MMU)

Physical memory

Disk / Other Hardware

User
virtual

memory
space

Kernel
virtual

memory
space

Physical
memory
space

How to mitigate an attack?
This research focuses on the

attack stage 3

Adversary’s
user process X

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Related work: Kernel vulnerability and countermeasures

2023/8/16 6

Kernel vulnerability protections and attack[1]
KASLR: Kernel Address Layout Space
Randomization

PaX: KERNEXEC, UDEREF
Memory fault has occurred on violation access

kGuard
Cross-platform compiler extension w/ out hardware feature

SMEP/SMAP/PXN/MPK
Supervisor Mode Execute Protection (SMEP)

Supervisor Mode Access Prevention (SMAP)

Privileged Execute-Never (PXN)

Memory protection key (MPK)：Protection key (Pkey)

[1]V Kemerlis, P, V., Polychronakis, M. and Kemerlis, D, A.: ret2dir: Rethinking
Kernel Isolation. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, pp. 957-972, USENIX (2014).

Virtual memory

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Memory Randomization for Kernel Space

Kernel hardening: it is difficult to identify the position of kernel code/data
The randomization work for kernel memory corruption or malicious invocation

2023/8/16 Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 7

Vanilla kernel

User process

Kernel data

Kernel code

Kernel code and data
are same location

KASLR

User process

Kernel data

Kernel code

Mechanism

Kernel code and data are
randomized at the boot

User process

Kernel data

Kernel code

Mechanism

Kernel code relocation at the
boot

FG-KASLR

Kernel code

User process

Kernel code

Mechanism

Kernel data relocation at
the running kernel

KDRM

Kernel data
Kernel data

Problem, Threat model, and Contributions

Problem
The previous work randomized the position of kernel data at the kernel boot

After the kernel boot, kernel data is not randomized in its position on the kernel memory
If the adversary identifies the position, illegal modification is succeeded

⇒The approach mitigates the problem at a kernel layer

Contribution
The purpose of the novel mechanism manages the relocation of kernel data (i.e., credential info)

KDRM changes the credential information of the user process at the running kernel
It protects credential information of user process from memory corruption
To avoid the miss behavior, KDRM works for system call invocations

The target attack is privilege escalation due to the implementation complexity of the Linux kernel

Threat model
The adversary tries to invocate vulnerable kernel code that occurs memory corruption
Hardware is safe: BIOS, CPU, MMU, TLB

2023/8/16 8Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Approach of KDRM (Kernel data relocation mechanism)

2023/8/16 Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 9

User process

Kernel virtual memory

User
space

Kernel
space

Proposed
mechanism

Write

User process
tries to override
kernel data

Proposed
mechanism
relocates kernel
data for each
system call

Protected kernel data
Kernel data 1, …, Kernel data N

Relocation kernel pages
Kernel page 1: reserved

…
Kernel page N: reserved

Protected
Kernel data

Original
kernel data

2. Adversary tries to occur
memory corruption

3．KDRM hooks the system call
invocation, then relocates the

credential information

1. Kernel data position is
identified at the user

process creation

Design of KDRM (Kernel data relocation mechanism)

2023/8/16 Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 10

Requirements
1. Memory corruption has

occurred via system calls
2. Transparency for the user

process
3. The relocation position is

randomized

Design
1. The relocation mechanism

is located in the kernel
2. Not affection for user

process and kernel

Implementation
1. Target is credential

information
2. Relocation kernel page is

prepared

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Implementation of KDRM (Kernel data relocation mechanism)

2023/8/16 11

Original kernel page

Relocation kernel page

Implementation target
• Linux, x86_64
• Protected kernel data：User ID, Group ID
• Relocation kernel pages （4KB）

• These are in task_sched for user process
• Explicit system call list

• Credential management system call

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Relocation Flow of KDRM

2023/8/16 12

1. KDRM hooks system call invocations
2. KDRM checks the system call number

(a) Not exclusion system call : relocation has not occurred
(b) Exclusion system call: relocation has occurred

i. KDRM selected the relocation kernel page
ii. KDRM copies the credential information to it
iii. KDRM changes the references to the relocation kernel page

3. KDRM continues the system call

Exclusion system call list

Evaluation

• Evaluations
• 1. Privilege escalation attacks security assessment

• Evaluation of kernel with KDRM can prevent privilege escalation attacks by introducing kernel
vulnerabilities that can be used for memory corruption

• 2. Performance evaluation in kernel operation

• Benchmark software measures the effect of kernel feasibility and performance cost
• 3. Attack difficulty assessment with kernel data relocation

• The granularity of randomization of virtual addresses by the relocation of

• kernel data using KDRM was compared with KASLR

• PoC attack code for evaluation: Kernel vulnerability

• Return the value of the address of credential information, then write any data to it

Environment : QEMU on the physical machine
• CPU: Intel(R)Xeon(R) W-2295 （3.00GHz，18コア ，メモリ32GB），OS: Debian 11.3(x86 64)
• Evaluation code：248行，PoC attack code：166行

• Modified 12 source code files for Linux kernel 5.18.2

2023/8/16 13Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Evaluation1: Attack prevention of implementation

Privilege escalation via introducing kernel vulnerability

2023/8/16 14Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

// PoC code running, process id is 1676
1. user $./a.out
2. uid=1000(user) gid=1000(user) groups=1000(user)
3. [*] sys_kvuln01 system call invocation
4. uid virtual address: ffffffff820f0aef
5. [*] sys_kvuln02 system call invocation
6. Killed user process

// Kernel log information
7. [*] start user process
8. [*] set kernel page of privilege at the user process creation
9. [363.704204] uid virtual address: ffffffff820f0aef
10. [*] start system call invocation
11. [363.702116] sys_kvuln02 system call invocation
12. [363.702179] sysnum: 0x6a (352)
13. [363.702204] PID: user process 1676
14. [*] relocate kernel page of privilege
15. [363.704204] uid virtual address: ffffffff81099c50

16. [*] kernel code information
17. // Kernel memory corruption
18. [363.704204] attack target virtual address: ffffffff820f0aef
19. [364.216821] page fault error code 2, virtual address: ffffffff820f0aef

Page fault error code 2 (0b010)
20. Page fault error code bits: from Linux v5.3.18 :

arch/x86/include/asm/trap_pf.h
a. bit 0 == 0: no page found
b. bit 1 == 1: write access, X86_PF_WRITE
c. bit 0 == 0: kernel-mode access

21. [*] finish system call invocation
22. [*] finish user process

Attack to credential information
2-6 lines：PoC code identifies the
virtual address of the credential,
then tries to overwrite it. However,
the kernel occurred the page fault
to kill the PoC code process

8-15 lines：KDRM change the
position of credential information
before the attack is occurred

17-20 lines：KDRM catches the
page fault for the previous virtual
address of credential information
with illegal write access

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Evaluation2: Overhead measurement

Performance evaluation results

1. LMbench: 1 system call requires 0.0422 μs to 2.4341 μs overhead
2. UnixBench: System call overhead，File copy, Pipe are effected. Score is 2.50% down

2023/8/16 15

System
call

Vanilla
kernel

Implement
ation

Overhead

fork+/bin/sh 434.2899 446.8079 12.5180
fork+execve 101.2726 129.0260 27.7534
fork+exit 89.9990 94.8672 4.8682
open/close 1.1642 1.4920 0.3278
read 0.1177 0.1599 0.0422
write 0.0908 0.1359 0.0451
fstat 0.1484 0.1953 0.0468
stat 0.5265 0.6979 0.1714

Instruction Vanilla kernel Implementation

Dhrystone 2 4450.50 4440.50 (0.22%)

Double-Precision Whetstone 1557.54 1552.92 (0.30%)

Execl Throughput 1193.23 1187.14 (0.52%)

File Copy 1024 bufsize 4122.08 3997.08 (3.03%)

File Copy 1024 bufsize 2790.40 2698.60 (3.29%)

File Copy 1024 bufsize 7401.80 7192.62 (2.82%)

Pipe Throughput 2109.68 2041.04 (3.25%)

Pipe-based Context Switching 806.02 785.34 (2.57%)

Process Creation 1019.10 1017.92 (0.12%)

Shell Scripts (1 concurrent) 2485.20 2456.13 (1.17%)

Shell Scripts (1 concurrent) 2298.00 2294.36 (0.16%)

System Call Overhead 1771.08 1620.68 (8.49%)

System Benchmarks Index Score 2195.16 2140.24 (2.50%)

UnixBench (score)LMbench (us)

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Evaluaiton3: Attack difficulty assessment

Randomization entropy：More than KASLR

Attack estimation score：n bits for KASLR 1/2n-1，KDRM 1/2n

KDRM changed the position of credentials for each system call

2023/8/16 16

Type Entropy Range Align Size

Linux KASLR
32 bits

8 bits 512MB
(29bits)

2MB
(21bits)

Linux KASLR
64bits

9 bits 1GB
(30bits)

2MB
(21bits)

Proposed
method

4 bits
(1 page)

4 KB
(12bits)

256 byte
(8bits)

Proposed
method

10 bits
(64 pages)

256KB
(18bits)

256 byte
(8bits)

Proposed
method

16 bits
(4096 pages)

16 MB
(24bits)

256 byte
(8bits)

Comparison of attack difficulty

KASLR 32bits
00010000 00010000 00000000 00000000

KASLR 64bits
00000000 00000000 00000000 00000000
00100000 00010000 00000000 00000000

Proposed method 4KB
00000000 00000000 00001000 10000000
256KB
00000000 00000010 00000000 10000000
16MB
00000000 10000000 00000000 10000000

Discussion

Evaluation results
Security capability for attack prevention of implementation

KDRM mitigates privilege escalation to change the position of credential info

KDRM requires additional overhead for the invocation of system calls

The reason for overhead relies on the replication of credential information

Limitation
The attack complexity depends on the number of relocation kernel page

Comparison of related works

2023/8/16 17Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Features KASLR KCoFI KDRM

Protection target Kernel data/code Kernel code Kernel data

Implementation Memory place
randomization

Verifying of kernel
code invocation flow

Memory place
relocation

Limitation Only boot timing Async kernel behavior Relocation number

Conclusion and Future works

KDRM presents the novel kernel security capability
It supports dynamically replacing credential information to change its virtual address

KDRM manages the relocation kernel page for the replacement target
It mitigates privilege escalation attacks via memory corruption

KDPM creates partially safe kernel data from directory illegal kernel data modification

Evaluation result
KDRM indicates the mitigation of privilege escalation via memory corruption
Overhead: 0.0422 μs to 2.4341 μs overhead, and 2.5% performance overhead
Attack difficulty assessment is compared with KASLR

Future works
The consideration of the combination of other works, and evaluation of actual kernel vulnerability
Design portability for other OS and Architecture support

2023/8/16 18Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

2023/8/16 19

Thank You-Merci-Gracias

kuzuno@port.kobe-u.ac.jp

انتباهكمعلىالشكرجزيلنشكركم

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

