KDRM: Kernel Data Relocation Mechanism to
Mitigate Privilege Escalation Attack (Short Paper)

NSS 2023, Session 7: System and Hardware Security, 2023.8.17

Hiroki KUZUNO?, Toshihiro YAMAUCHIP®,
aGraduate School of Engineering,
Kobe University, Japan
bFaculty of Environmental, Life, Natural Science and Technology,
Okayama University, Japan

2023/8/16

© Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1

Outline

B Summary and Result
m Motivation and Goal
» To make the countermeasure mechanism against kernel vulnerability
m The detail of kernel vulnerability attack and Related Work
» Memory randomization researches for kernel address space
m Problem, Threat Model, and Contribution
m Approach: KDRM (Kernel Data Relocation Mechanism)
» The design of dynamically replacing credential information against privilege escalation
B KDRM Implementation
» The software relocation of credential information for the latest Linux kernel
m Evaluation

» Mitigation result of privilege escalation at the kernel layer
» Overhead and attack complexity

m Discussion and Conclusion

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Summary and Result

m Background and Motivation
» OS kernel (kernel) vulnerability has become a huge threat to the system security
» Adversary exploits the kernel vulnerability to compromise the credential management
¢t is an important topic to enhance the kernel resilience against the kernel attack

m Approach
» The purpose of KDRM: Kernel Data Relocation Mechanism
¢ [t can mitigate a kernel attack threat (e.g., memory corruption)
» The mechanism relocates the credential information for the running kernel
¢ The research tries to make the PoC of kernel data position of kernel memory
¢t tries to achieve the countermeasure of memory corruption attack at the kernel layer
B Results
» The kernel vulnerability attack failed on the Linux with KDRM
» Overhead1: LMbench shows that 102.88%-149.67%
» Overhead?2: UnixBench shows that 2.50%

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Motivation and Goal

m Motivation

» An adversary occurs in kernel data modification through malicious code with kernel mode
» Enhancing kernel resilience at the kernel layer w/o any hardware and VMM features
¢ Mitigate a kernel vulnerability attack with a memory corruption

m The attack stages

Vulnerable kernel Ker '.“e' [PriV"e.ge escalat-ion I Rootkit
q " vulnerability attack i Modified Security [Installati
GoblP gl Remote or Local [feature on Kernel | e
\---------"
Attack Stage 1 Attack Stage 2 Attack Stage 3 Attack Stage 04
Identification Prevention Mitigation Detection

m Goal
» To prevent illegal kernel data modification (i.e., credential information)
» Enhance the kernel security capability relies on a secure kernel mechanism

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

The detail of kernel vulnerability attack

B Security feature is targeted from kernel attack

2023/8/16

Adversary’s = Malicious
user process X code

©

L Vulnerable kernel
""""" code report

- space
Privilege escalation
Modified Security

feature on Kernel
|

r ------------------------- -— ------------ *

: -

| i N, Kemnel

| securty W v Kernel vulnerability attack

: EO Vulnerable _ ... r;/érrt;;n :

I Credential kernel code ry o]
|

|

L

T N

N

How to mitigate an attack?
This research focuses on the ¥

attack stage 3 _
Rootkit

Installation

Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

4

\--

Attack Stage 1

Attack Stage 2

Attack Stage 3

Attack Stage 4

Related work: Kernel vulnerability and countermeasures

m Kernel vulnerability protections and attack|1]

» KASLR: Kernel Address Layout Space
Randomization

» PaX: KERNEXEC, UDEREF

¢ Memory fault has occurred on violation access

Virtual memory

Corrupted Code Pointer

I —
Corrupted Data Pointer

» kGuard
¢ Cross-platform compiler extension w/ out hardware feature Kernel Space UDEREF
KERNEXEC User Space SMAP
» SMEP/SMAP/PXN/MPK e
¢ Supervisor Mode Execute Protection (SMEP) SMEP/PXN =
ontrolled Data Structure

¢ Supervisor Mode Access Prevention (SMAP)
¢ Privileged Execute-Never (PXN)
¢ Memory protection key (MPK): Protection key (Pkey)

Controlled Code Pointer

&
U

Shellcode

[1]V Kemerlis, P, V., Polychronakis, M. and Kemerlis, D, A.: ret2dir: Rethinking
Kernel Isolation. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, pp. 957-972, USENIX (2014).

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Memory Randomization for Kernel Space

m Kernel hardening: it is difficult to identify the position of kernel code/data

Vanilla kernel

User process

()

N
Kernel data

N
Kernel code

G J

Kernel code and data
are same location

2023/8/16

KASLR

User process

()

N

Kernel data

N

Kernel code

1
: Mechanism I-
)

-

_

Kernel code and data are
randomized at the boot

© Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

FG-KASLR

User process

-

~

Kernel data]
Y

Kernel code]

_

: Mechanism }
]

- -

Kernel code relocation at the

boot

KDRM

» The randomization work for kernel memory corruption or malicious invocation

User process

-

A
II. Kernel data]

ADRRERES \
: Mechanism I-
o)
_ J

Kernel data relocation at

the running kernel

Problem, Threat model, and Contributions

B Problem
» The previous work randomized the position of kernel data at the kernel boot
¢ After the kernel boot, kernel data is not randomized in its position on the kernel memory
¢ |f the adversary identifies the position, illegal modification is succeeded
=The approach mitigates the problem at a kernel layer

m Contribution
» The purpose of the novel mechanism manages the relocation of kernel data (i.e., credential info)
¢ KDRM changes the credential information of the user process at the running kernel
¢ |t protects credential information of user process from memory corruption
¢ To avoid the miss behavior, KDRM works for system call invocations
» The target attack is privilege escalation due to the implementation complexity of the Linux kernel

B Threat model

» The adversary tries to invocate vulnerable kernel code that occurs memory corruption
» Hardware is safe: BIOS, CPU, MMU, TLB

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 8

Approach of KDRM (Kernel data relocation mechanism)

Write

1. Kernel data position is 2. Adversary tries to occur
identified at the user User process memory corruption

: User
process creation space 7
R Kernel #7777 propose d F——
space f : tries to override

: mechanism :
:. llllllllllllllllll I lllllllllllllllll . kernel data

¥

Protected kernel data
Kernel data 1, ..., Kernel data N
Relocation kernel pages

Propose_d Kernel page 1: reserved
mechanism]
relocates kernel : Kernel page N: reserved
data for each :
system call
v [Original)
kernel data
——l KProtelc(’;ecti
3. KDRM hooks the system call |T ’
invocation, then relocates the |)
credential information Kernel virtual memory

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Design of KDRM (Kernel data relocation mechanism)

D SR Kernel attack flow *Memory corruption region
Kernel data relocation Proposed
. . Kernel page ; .
e Proposed mechanism handling mechanism region

User process

Vanilla kernel

Kernel |= Kernel data
virtual 1™ (e.g., variable or
memory function pointer

- J

1. User process tries to overwrite
kernel data

2023/8/16

User process
2 -

EEEEEEEEEEEEEnnmnn® Userspace

Kernel with KDPM Kernel space

Relocation kernel page

Requirements

1. Memory corruption has
occurred via system calls

2. Transparency for the user
process

3. The relocation position is
randomized

Design

> @ 1. The relocation mechanism
is located in the kernel
e 2. Not affection for user
virtua
""""""""" l | memory process and kernel
Pro ected |
; Proposed : 1 kernel datta list I : Imolementation
L mechanism § | 1 = R : wj’;in“zg‘il”l,st : plemeniatio .
\ kemel o 1. Target is credential
i . information
1. Proposed mechanism moves original kernel data to relocation kernel page 2 Re|OcatI0n ke rnel page |S
for the virtual address shifting when the user process invokes system call
2. ltis difficult to determine protected kernel data virtual address for memory prepa red
corruption from user process
© Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1 O

Implementation of KDRM (Kernel data relocation mechanism)

Original kernel page

Kernel

Kernel

N virtual memory

)\

Proposed security
mechanism selects

// From Linux kernel v5.18.2
// include/linux/sched.h
struct task_struct {

const struct cred __rcu “cred;

}
// include/linux/cred.h
struct cred {

R T R St

1)"-"-real UID of the task */

\| relocation kernel page, i g GIB%?}% the task */

Kernel page then relocates user s el e

User process |u ol o process credential for i1 5/ include/linux/uidgid.h

credential 1 each system call i tyge/difrngﬂcfjcemel,uidsz,t uid_t;

20 // typedef unsigned int __kernel_uid32_t;
= |4-----'l 21 uic}_t val;
Relocation \ : ..Illlllllllllllll.‘ ii iyl;elcllgft:;truct {))
kernelpagel |, : Proposed : e gﬁd%ﬁiggﬁ e ek oty L L (SRR
Relocation 1 3 . 1 v o P
emelpages | | [Usreroces et 5L IMERIANEM B
cover kernel N\ Lcrecentia A :
data relocation : [—— | Implementation target
[=gien Relocation keRe cl’caa '°rl‘_st * Linux, x86 64
rnel page li -
_ p—kernel page N =gl Protected kernel data: User ID, Group ID
............... x| « Relocation kernel pages (4KB)
\. User / system callfist « These are in task_sched for user process
» Explicit system call list
Relocation kernel page » Credential management system call
2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1 1

Relocation Flow of KDRM

—
system call
(3)

1. KDRM hooks system call invocations

ymmmmmmmmommommmmmmooonooooeee- S ' (4)
Y Start of — | ti :
- -+ Invocation o
User process r—b[system call }—»(1) system call
F 3
(2) l | (2-a)Yes t

Check if the system call
is in the exclusion system call list

(2-b-i)

Select relocation a kernel page
from the relocation kernel page list

(2-b-ii)

(2-b-iii)

2023/8/16

b

Copy user process credential to
the relocation kernel page

Change the pointer to user

process credential on the
relocation kernel page

<= === Original kernel control flow

<4 Kernel w/ proposed method control flow

2. KDRM checks the system call number
(a) Not exclusion system call : relocation has not occurred
(b) Exclusion system call: relocation has occurred
I. KDRM selected the relocation kernel page
ii. KDRM copies the credential information to it
iii. KDRM changes the references to the relocation kernel page
3. KDRM continues the system call

Exclusion system call list

Item Description

execve, setuid, setgid, setreuid, setregid

Exclusion system call list] i . ;
y setresuid, setresgid, setfsuid, setfsgid

© Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

12

Evaluation

« Evaluations
* 1. Privilege escalation attacks security assessment

» Evaluation of kernel with KDRM can prevent privilege escalation attacks by introducing kernel
vulnerabilities that can be used for memory corruption

« 2. Performance evaluation in kernel operation
« Benchmark software measures the effect of kernel feasibility and performance cost
« 3. Attack difficulty assessment with kernel data relocation
« The granularity of randomization of virtual addresses by the relocation of
» kernel data using KDRM was compared with KASLR
» PoC attack code for evaluation: Kernel vulnerability
» Return the value of the address of credential information, then write any data to it

m Environment : QEMU on the physical machine

« CPU: Intel(R)Xeon(R) W-2295 (3.00GHz, 1837 , AE!)32GB), OS: Debian 11.3(x86 64)
« Evaluation code:248%T, PoC attack code: 16647
* Modified 12 source code files for Linux kernel 5.18.2

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

13

Evaluation1: Attack prevention of implementation

m Privilege escalation via introducing kernel vulnerability

2-6 lines: PoC code identifies the

Attack to credential information virtual address of the credential, 17-20 lines: KDRM catches the
// PoC code running, process id is 1676 then tries to overwrite it. However, page fault for the p.rev.lous wrtyal
T T | the kernel occurred the page fault | | address of credential information
12 uid=1000(user) gid=1000(user) groups=1000(user) 1| to kill the PoC code process with illegal write access
12 [sye_kuuinO1 system ca invocation L==""T16_[Jemelcoseintomaton __Z——"_______________
:5' Li' vi uka al‘ ogess.t " ae i I 117. / Kernel memory corruption i
L ['] sys_kvuin02 system call invocation 1 118. [363.704204] attack target virtual address: ffffffff820f0aef !
l.6'_ _K_I”Sd_U_SEI’_pE)Ee_SS_ ________________ _! :19. [364.216821] page fault error code 2, virtual address: ffffffff820fOaef |
I/ Kernel log information | Page fault error code 2 (0b010) :
7. []startuserprocess :20. Page faul_t error code bits: from Linux v5.3.18 : 1
18. [*] set kernel page of privilege at the user process creation : 1 arch/x86/include/asm/trap_pf.h I
19. [363.704204] uid virtual address: ffffffff820f0aef 1| a. bit0==0:no page found :
|1O [*] start System call invocation : I b. blt 1 ==1: write access, X86_PF_WR|TE |
:11. [363.702116] sys_kvuIln02 system call invocation 1 e G D02 O kernel mOde 80088 e e !
112, [363.702179] sysnum: Ox6a (352) 1 21 [:] finish system call invocation
:13. [363.702204] PID: user process 1676 : 22. [*]finish user process
14. [*] relocate kernel page of privilege I :
| .
115._[_363.704204] uid virtual address; ffffff81099¢50__ _ _ _ 1< 8-15 lines:KDRM change the

2023/8/16

before the attack is occurred

position of credential information

© Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

14

Evaluation2: Overhead measurement

m Performance evaluation results

» 1. LMbench: 1 system call requires 0.0422 ps to 2.4341 us overhead
» 2. UnixBench: System call overhead, File copy, Pipe are effected. Score is 2.50% down

LMbench (us) UnixBench (score)

Dhrystone 2 4450.50 4440.50 (0.22%)

fork+/bin/sh Double-Precision Whetstone 1557.54 1552.92 (0.30%)

or s 4342899 4468079 1 251 80 Execl Throughput 1193.23 1187.14 (0.52%)

fork+execve 101.2726 129.0260 27.7534 File Copy 1024 bufsize 4122.08 3997.08 (3.03%)

. File Copy 1024 bufsize 2790.40 2698.60 (3.29%)
fork+exit

89.9990 94.8672 4.8682 File Copy 1024 bufsize 7401.80 7192.62 (2.82%)

open/close 1.1642 1.4920 0.3278 Pipe Throughput 2109.68 2041.04 (3.25%)

read O 1 1 77 0 1 599 00422 Pipe-based Context Switching 806.02 785.34 (2.57%)

Process Creation 1019.10 1017.92 (0.12%)

write 0.0908 0.1359 0.0451 Shell Scripts (1 concurrent) 2485.20 2456.13 (1.17%)

fstat O_ 1 484 O_ 1 953 0_0468 Shell SCI’iptS (1 concurrent) 2298.00 2294.36 (016%)

System Call Overhead 1771.08 1620.68 (8.49%)

stat 0.5265 0.6979 0.1714 System Benchmarks Index Score 2195.16 2140.24 (2.50%)

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1 5

Evaluaiton3: Attack difficulty assessment

m Randomization entropy: More than KASLR

m Attack estimation score:n bits for KASLR 1/2™1, KDRM 1/2n

» KDRM changed the position of credentials for each system call
Comparison of attack difficulty

Linux KASLR 8 bits 512MB 2MB RASLR S2bits

32 bits (29bits) (21bits) 00010000 00010000 00000000 00000000

Linux KASLR 9 bits 1GB 2MB KASLR 64bits

64bits (30bits) (21bits) 00000000 00000000 00000000 00000000
00100000 00010000 00000000 000000

Prciﬁozed 4 bits 4 KB 256 byte « . 00

meme (1 page) (12bits) (8bits) Proposed method 4KB

Proposed 10 bits 256KB 256 byte 00000000 00000000 00001000 10000000

method (64 pages) (18bits) (8bits) 256KB DI
00000000 000000710 00000000 10000000

Proposed 16 bits 16 MB 256 byte 16MB) g

method (4096 pages) (24bits) (8bits) 00000000 10000000 00000009 10000000

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

Discussion

m Evaluation results
» Security capability for attack prevention of implementation
—=KDRM mitigates privilege escalation to change the position of credential info
» KDRM requires additional overhead for the invocation of system calls
—The reason for overhead relies on the replication of credential information

®m Limitation
» The attack complexity depends on the number of relocation kernel page

m Comparison of related works

Protection target Kernel data/code Kernel code Kernel data

Implementation Memory place Verifying of kernel Memory place
randomization code invocation flow relocation

Limitation Only boot timing Async kernel behavior Relocation number

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1 7

Conclusion and Future works

B KDRM presents the novel kernel security capability
» It supports dynamically replacing credential information to change its virtual address

¢ KDRM manages the relocation kernel page for the replacement target
» It mitigates privilege escalation attacks via memory corruption
* KDPM creates partially safe kernel data from directory illegal kernel data modification

» Evaluation result
¢ KDRM indicates the mitigation of privilege escalation via memory corruption
¢ Overhead: 0.0422 ps to 2.4341 us overhead, and 2.5% performance overhead
¢ Attack difficulty assessment is compared with KASLR

m Future works
» The consideration of the combination of other works, and evaluation of actual kernel vulnerability
» Design portability for other OS and Architecture support

2023/8/16 © Unauthorized copying or third-party disclosure of the contents of this document is prohibited. 1 8

2023/8/16

Ll e S s oS S

hank You-Merci-Gracias

kuzuno@port.kobe-u.ac.jp

© Unauthorized copying or third-party disclosure of the contents of this document is prohibited.

19

