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We already know the answer!  
But wait, there’s a plan…
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Test Suite 
• Does it crash? 
• Does it still communicate with CnC? 
• Does it still encrypt the /home/ folder?  

By Construction 
• Add no-op operations 
• Ensure it is not executed at runtime
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Available Transformations
Preserved Semantics
Plausibility

Test Suite 
• User studies 
• Automated heuristics  

By Construction 
• Taking precautions during mutation

Does it look legit?
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Available Transformations 
Preserved Semantics 

Plausibility 
Robustness to Preprocessing

See 
Table I  
in §II.C

Compare existing methods & improve SoA
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Problem space reasoning applies and affects (backdoor) poisoning attacks too! 

[IEEE S&P 2023] Yang et al. Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers 
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Android Attack: Experiments
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• Restricting feature-space perturbations  does not hinder problem-space attack δ
• App statistics (e.g., size) do not become anomalous after injection (other stats in the 

paper)
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[IEEE S&P 2023] Dyrmishi et al. On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks
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[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
[IEEE S&P 2023] Dyrmishi et al. On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks

• Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks 

• Text: Problem Space AT 16.94% more effective than Feature Space AT  

• Botnet Traffic: Problem Space AT robustness ~= Feature Space AT 

• Windows Malware: Problems Space AT outperforms Feature Space AT robustness
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[IEEE S&P 2023] Dyrmishi et al. On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks

• Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks 

• (Marginal) Text: Problem Space AT 16.94% more effective than Feature Space AT  

• (Not Required) Botnet Traffic: Problem Space AT robustness ~= Feature Space AT 

• (Required) Windows Malware: Problems Space AT > Feature Space AT robustness 

• It may seem a task-dependent result… let’s fix some variables
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[IEEE S&P 2023] Dyrmishi et al. On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against Realistic Adversarial Attacks

• Exciting work [IEEE S&P 2023] on Text, Botnet Traffic, Windows Malware Classification Tasks 

• (Marginal) Text: Problem Space AT 16.94% more effective than Feature Space AT  

• (Not Required) Botnet Traffic: Problem Space AT robustness ~= Feature Space AT 

• (Required) Windows Malware: Problems Space AT > Feature Space AT robustness 

• It may seem a task-dependent result… let’s fix some variables

• Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018 

• DREBIN [NDSS’14]: Linear SVM, binary feature space 

• Sec-SVM [TDSC’17]: Feature-space defense for DREBIN (evenly distributes weights) 

• Increasing level of perturbation budget and [IEEE S&P 2020] Android attack
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• Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018 

• DREBIN [NDSS’14]: Linear SVM, binary feature space 

• Sec-SVM [TDSC’17]: Feature-space defense for DREBIN (evenly distributes weights) 

• Increasing level of perturbation budget and [IEEE S&P 2020] Android attack

SVM Adversarial Training

Budget (%) FS ASR PS ASR FS F1 Clean PS F1 Clean

10 0.22 0.02 0.9 0.9

20 0.14 0.01 0.9 0.9

30 0.12 0 0.9 0.9

40 0.1 0 0.9 0.9
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• Dataset: ~170K Android apps (10% malware) from Jan 2017 to Dec 2018 

• DREBIN [NDSS’14]: Linear SVM, binary feature space 

• Sec-SVM [TDSC’17]: Feature-space defense for DREBIN (evenly distributes weights) 

• Increasing level of perturbation budget and [IEEE S&P 2020] Android attack

SecSVM Adversarial Training

Budget (%) FS ASR PS ASR FS F1 Clean PS F1 Clean

10 0.95 0.17 0.81 0.81

20 0.91 0.12 0.81 0.81

30 0.92 0.1 0.81 0.81

40 0.89 0.07 0.81 0.81
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Problem vs Feature Space Adversarial Training

Perhaps not task-dependent but affected by 

• Program abstractions 
• Feature representations 
• ML models
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Three major unrealistic assumptions*

ML for Malware Detection 101

* “Pitfalls” expanded in [USENIX Sec 2022] Dos and Don’ts of Machine Learning for Computer Security   
https://s2lab.cs.ucl.ac.uk/downloads/dodo.pdf
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1. Large Representative Dataset with Timestamps

2. Reproducible State-of-the-Art Algorithms

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract

(More on this later, I promise ;-))



Dataset

• 129,729 Android applications from AndroZoo  

• 10% malware 

• Covering 3 years (2014 to 2016) 

42

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

43

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

43

Temporal training consistencyC1
{good|mal}ware temporal consistencyC2
Realistic testing classes ratioC3

Experimental 
Constraints

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract



1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL
NDSS14

F1

TESSERACT Evaluations

43

Temporal training consistencyC1
{good|mal}ware temporal consistencyC2
Realistic testing classes ratioC3

Experimental 
Constraints

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract



1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg1

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Alg2

1 4 7 10 13 16 19 22

Testing period (month)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

DL
NDSS14

F1

TESSERACT Evaluations

43

Temporal training consistencyC1
{good|mal}ware temporal consistencyC2
Realistic testing classes ratioC3

Experimental 
Constraints

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time  
https://s2lab.cs.ucl.ac.uk/projects/tesseract

Best 10-fold (original paper)
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Performance-Cost Trade Offs 
• Detection Performance (e.g., AUT F1) 

• Labeling Cost for retraining (e.g., manpower) 

• Quarantine Cost for rejection (e.g., low-
confidence decisions)

Incremental Retraining      Active Learning      Online Learning     Rejection*



• Incremental retraining costly?* 

• Active learning and query strategies* ** 

• Online learning and the risk of self-poisoning+ 

*[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time 
**[arXiv 2023] Chen et al. Continuous Learning for Android Malware Detection

+[AISec 2021] Investigating Labelless Drift Adaptation for Malware Detection — https://s2lab.cs.ucl.ac.uk/downloads/aisec47-kanA.pdf
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Performance-Cost Trade Offs 
• Detection Performance (e.g., AUT F1) 

• Labeling Cost for retraining (e.g., manpower) 

• Quarantine Cost for rejection (e.g., low-
confidence decisions)

Incremental Retraining      Active Learning      Online Learning     Rejection*

* [USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
* [IEEE S&P 2022] Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend

As well as measuring the overall effect 
of drift we can identify specific aspects 
of the drift and reject objects that are 
likely to be misclassified.



Revisiting Classification in the Presence of 
Concept Drift 



Revisiting Classification in the Presence of 
Concept Drift 

Covariate Shift: Change in feature distribution

Prior-probability Shift: Change in class base rate

Concept Drift: Change in ground truth definition

P(x ∈ X)

P(y ∈ Y )

P(y ∈ Y |x ∈ X)
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New 
Example

Transcend at Test Time
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[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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New 
Example

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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New 
Example

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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New 
Example

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models 
https://s2lab.cs.ucl.ac.uk/projects/transcend/



Conformal Prediction and Evaluation

Conformal 
Evaluator

• CP theory lays foundation for CE 

• CPs outputs prediction sets with guaranteed confidence 1 - ε  

• CPs rely on two assumptions: 

• Exchangeability: Generalization of i.i.d. 

• Closed-world: Fixed label space

Conformal  
Predictor

51

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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SVM Polynomial

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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SVM Polynomial
More dissimilar region

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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SVM Polynomial
More dissimilar region

Test point

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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Yang et al. CADE: Detecting and Explaining Concept Drift Samples for Security Applications. USENIX Sec 2021 
 (Slide courtesy of Gang Wang)
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Contrastive Learning Representation and Transcendent’s NCM 

54

Yang et al. CADE: Detecting and Explaining Concept Drift Samples for Security Applications. USENIX Sec 2021 
 (Slide courtesy of Gang Wang)

• CL seems ideal to be used as a non-conformity measure (!)

Aside
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SVM Polynomial SVM RBF 3NN Nearest Centroid

Random Forests QDA Neural Network 
(output activation)

Neural Network 
(last hidden layer  

w/ SVM RBF)
55

More 
dissimilar 

region

Test point

From NCMs to p-values and 
statistic metrics to then compute 
per-class thresholds by solving a 
constrained optimization problem  

(More Details in the Paper)

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 

More experiments on different 
datasets, SOTA, and optimization 

in the paper 
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› Anomaly detection

ML for Security

› Tantalising results, boasting 0.99 F1-score

› ML for Security often operates in non-stationary contexts


› No i.i.d. assumption 

› Concept drift 

› ML performance decay over time in realistic settings

PD

› Classification & clustering

Machine learning techniques used by thousands of 
scientists to analyse data are producing results that 
are misleading and often completely wrong 

February 2019



https://reproducible.cs.princeton.edu/ Sayash Kapoor and Arvind Narayanan — 
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• Let’s not panic: liaised with IEEESSP22 Chairs 
• Results still valid :-) 

• Unfortunately, unclear errata corrige process for IEEE 
• We should do better! 
• IEEESSP24 CfP/reviewing form promising

(*) [USENIX Sec 2022] Dos and Don’ts of Machine Learning in Computer Security  
https://s2lab.cs.ucl.ac.uk/downloads/dodo.pdf

(*)

https://s2lab.cs.ucl.ac.uk/downloads/dodo.pdf
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the 
Presence of Concept Drift https://s2lab.cs.ucl.ac.uk/projects/transcend/ 

• Let’s not panic: liaised with IEEESSP22 Chairs 
• Results still valid :-) 

• Unfortunately, unclear errata corrige process for IEEE 
• We should do better! 
• IEEESSP24 CfP/reviewing form promising

(*) [USENIX Sec 2022] Dos and Don’ts of Machine Learning in Computer Security  
https://s2lab.cs.ucl.ac.uk/downloads/dodo.pdf

(*)

IEEE S&P 2024 Review Form (Excerpt)

1. Independent Confirmation of Important Results with Limited Prior Research

https://s2lab.cs.ucl.ac.uk/downloads/dodo.pdf
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[1] Pendlebury et al., TESSERACT:  Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 
[2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 
[3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 
[4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 
[5] Arp et al., Dos and Dont’s of Machine Learning in Security, USENIX Security 2022 
[6] Kan et al. Investigating Labelless Drift Adaptation for Malware Detection, AISec 2021 
[7] Yang et al. Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers. IEEE S&P 2023

Take Aways

• Computer Security is highly non-stationary [1] and often class-imbalanced 

› Arms-race between attackers and defenders; role of abstractions/representations 

› Perform time-aware evaluations [1], and avoid pitfalls [5] 

› Assume things go wrong: explore rejection options [3,4], active learning [1], online learning [6]
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https://twitter.com/joshua_saxe/status/1550545466072264704
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Exciting Recent Effort [8]

[8] Pei et al. Symmetry-Preserving Program Representations for Learning Code Semantics  
Collaboration with Columbia University — https://arxiv.org/abs/2308.03312

https://s2lab.cs.ucl.ac.uk
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Ph.D. Students Ph.D. Alumni

Feargus

Current Research Collaborators

Fabio Pierazzi

Team-ups

Theo Jacopo Mark Giulio

Xinran Zheng
Xingzhi 
Qiang

PostDoc

I am hiring at UCL! :-)
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I’m Hiring• Computer Security is highly non-stationary [1] and often class-imbalanced 

› Arms-race between attackers and defenders; role of abstractions/representations 

› Perform time-aware evaluations [1], and avoid pitfalls [5] 

› Assume things go wrong: explore rejection options [3,4], active learning [1], online learning [6] 

• Reason about problem space (relizable) adversarial attacks and defenses [2, 7] 

• Reason about the relationship between adversarial ML and dataset shifts 

• Reason about abstractions and representations and their effect on the entire ML pipeline 

• Bridging the academia-industry gap 

› See https://s2lab.cs.ucl.ac.uk for access
[1] Pendlebury et al., TESSERACT:  Eliminating experimental bias in malware classification across space and time, USENIX Security 2019 
[2] Pierazzi et al., Intriguing Properties of Adversarial ML attacks in the problem psace, IEEE S&P 2020 
[3] Jordaney et al., Transcend: Detecting concept drift in malware classification models, USENIX Security 2017 
[4] Barbero et al., Transcending Transcend: Revisiting malware classification in the presence of concept drift, IEEE S&P 2022 
[5] Arp et al., Dos and Dont’s of Machine Learning in Security, USENIX Security 2022 
[6] Kan et al. Investigating Labelless Drift Adaptation for Malware Detection, AISec 2021 
[7] Yang et al. Jigsaw Puzzle: Selective Backdoor Attack to Subvert Malware Classifiers. IEEE S&P 2023

Exciting Recent Effort [8]

[8] Pei et al. Symmetry-Preserving Program Representations for Learning Code Semantics  
Collaboration with Columbia University — https://arxiv.org/abs/2308.03312
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Temporal Inconsistency in Train/Test Sets Violations use future knowledge in training

Kevin Allix et al. [ESSoS 2016]

Brad Miller et al. [DIMVA 2016]

TestingTraining
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Temporal {good|mal}ware inconsistency Violations may learn artifacts

new_method()
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Unrealistic Test Class Ratio

Higher % of malware in testing 

Precision

Recall
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TP + FN
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• Training set: Fixed 

• Testing set: Varying % of 
mw (by downsampling gw)
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Sources of Experimental Bias (3/3)
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Unrealistic Test Class Ratio

Higher % of malware in testing 

Precision

Recall

F1-Score

Pmw =
TP

TP + FP

Rmw =
TP

TP + FN

Violations produce unrealistic results

Decrease

• Training set: Fixed 

• Testing set: Varying % of 
mw (by downsampling gw)

Realistic 
%mw 

(Android)



Prior Work on Adv. Malware 
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[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Available Transformations 
•Limiting #features modified                                           [ESORICS’17] 

Robustness to Preprocessing  
• Removable unused permissions                                    [ESORICS’17] 
• Removal code (unreachable, no-op)              [EUSIPCO’18, RAID’18] 
• Unclear                                                                             [ACSAC’18] 

Preserved Semantics 
• Highly unstable transformations                                      [ACSAC’18]

Prior work was fundamental to initially explore problem-space attacks.  
We propose a principled approach that supports reasoning.

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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https://s2lab.cs.ucl.ac.uk/projects/intriguing



76

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Available Transformations 
Code addition through automated software transplantation.

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Preserved Semantics 
Malicious semantics preserved by construction using 
opaque predicates (inserted code is not executed at 
runtime).

Available Transformations 
Code addition through automated software transplantation.

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Preserved Semantics 
Malicious semantics preserved by construction using 
opaque predicates (inserted code is not executed at 
runtime).

Robustness to Preprocessing 
We’re robust to:  
 - removal of redundant code 
 - undeclared variables  
 - unlinked resources  
 - undefined references  
 - naming conflicts 
 - no-op instructions.

Available Transformations 
Code addition through automated software transplantation.

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Preserved Semantics 
Malicious semantics preserved by construction using 
opaque predicates (inserted code is not executed at 
runtime).

Plausibility 
Only realistic code is injected (rather than orphaned urls, api calls, etc.) 
Mutated apps install and start on an emulator.

Robustness to Preprocessing 
We’re robust to:  
 - removal of redundant code 
 - undeclared variables  
 - unlinked resources  
 - undefined references  
 - naming conflicts 
 - no-op instructions.

Available Transformations 
Code addition through automated software transplantation.

Our Android Attack

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Identify feature entry point1 Identify activity in dex

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Identify feature entry point1 Identify activity in dex

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Choose any vein (backward slice)2
Extract intent creation 
and startActivity()

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Choose any vein (backward slice)2
Extract intent creation 
and startActivity()

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Collect organ (forward slice)3 Gather activity definition

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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</>

DEX

Collect organ (forward slice)3 Gather activity definition

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Include transitive dependencies4
Recursively collect 
dependencies

</>

DEX

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Include transitive dependencies4
Recursively collect 
dependencies

</>

DEX

</>

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Store organ in an “ice box”5
Save gadget to a database 
ready for the attack

</>

DEX

</>

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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Store organ in an “ice box”5
Save gadget to a database 
ready for the attack

</></>

Organ Harvesting

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.cs.ucl.ac.uk/projects/intriguing
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• Actions for rejected points *: 

• Manual inspection 

• Downstream analysis 

• Quarantine 

• Exemption

Rejection Cost
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* [AISec 2021] Investigating Labelless Drift Adaptation for Malware Detection 
* [AISec 2021] INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection 



The Cost of Transductive Conformal Evaluators

• Underlying classifier retrained for every 

training point  

• Rooted in CP theory 

• Often computationally infeasible

Target of p-value computation

Remaining points 
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Approximate TCE

• First attempt to improve on the TCE 

• P-values computed in batches  

• Relies on unsound assumption

Target of p-value computation

Remaining points 
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Inductive Conformal Evaluator (ICE)

• Increase speed by splitting into  

training and calibration sets 

• Rooted in CP theory  

• Computationally efficient 

• Informationally inefficient 

Target of p-value computation

Remaining points 

Excluded points used for prediction but not evaluation
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Cross-Conformal Evaluator (CCE)

• Inspired by cross validation - multiple 

ICEs in parallel vote on evaluation 

• Rooted in CP theory  

• Computationally efficient 

• Informationally efficient 
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Android Malware (maximizing F1)

Results: Rejection Performance — Drift Rate

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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Android Malware (maximizing F1)

Results: Rejection Performance — Drift Rate

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift 
https://s2lab.cs.ucl.ac.uk/projects/transcend/ 



Results: How much are app statistics affected?

• Adding all these features (+ side-effect features), what does it do to app statistics? 

› Limiting feature-space perturbations  does not affect problem-space attackδ
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[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space  
https://s2lab.kcl.ac.uk/projects/intriguing



Results: How much time does an attack take?

• In most cases, less than 2 minutes to create an adversarial example 
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